Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ < 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.
In this study, as a continuation to the studies of the self-interaction diffusion driven by subfractional Brownian motion SH, we analyze the asymptotic behavior of the linear self-attracting diffusion:dXtH=dStH−θ∫0t(XtH−XsH)dsdt+νdt,X0H=0,where θ > 0 and ν∈R are two parameters. When θ < 0, the solution of this equation is called self-repelling. Our main aim is to show the solution XH converges to a normal random variable X∞H with mean zero as t tends to infinity and obtain the speed at which the process XH converges to X∞H as t tends to infinity.
Correction for ‘LAPONITE® nanodisk-based platforms for cancer diagnosis and therapy’ by Gaoming Li et al., Mater. Adv., 2022, https://doi.org/10.1039/d2ma00637e.
Let B = B t 1 , … , B t d t ≥ 0 be a d -dimensional bifractional Brownian motion and R t = B t 1 2 + ⋯ + B t d 2 be the bifractional Bessel process with the index 2 HK ≥ 1 . The Itô formula for the bifractional Brownian motion leads to the equation R t = ∑ i = 1 d ∫ 0 t B s i / R s d B s i + HK d − 1 ∫ 0 t s 2 HK − 1 / R s d s . In the Brownian motion case K = 1 and H = 1 / 2 , X t ≔ ∑ i = 1 d ∫ 0 t B s i / R s d B s i , d ≥ 1 is a Brownian motion by Lévy’s characterization theorem. In this paper, we prove that process X t is not a bifractional Brownian motion unless K = 1 and H = 1 / 2 . We also study some other properties and their application of this stochastic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.