We present an advanced technique for the design and optimization of GaAs/ AlGaAs quantum cascade laser structures. It is based on the implementation of the simulated annealing algorithm with the purpose of determining a set of design parameters that satisfy predefined conditions, leading to an enhancement of the device output characteristics. Two important design aspects have been addressed: improved thermal behavior, achieved by the use of higher conduction band offset materials, and a more efficient extraction mechanism, realized via a ladder of three lower laser states, with subsequent pairs separated by the optical phonon energy. A detailed analysis of performance of the obtained structures is carried out within a full self-consistent rate equations model of the carrier dynamics. The latter uses wave functions calculated by the transfer matrix method, and evaluates all relevant carrier-phonon and carrier-carrier scattering rates from each quantized state to all others within the same and neighboring periods of the cascade. These values are then used to form a set of rate equations for the carrier density in each state, enabling further calculation of the current density and gain as a function of the applied field and temperature. This paper addresses the application of the described procedure to the design of ϳ 9 m GaAs-based mid-infrared quantum cascade lasers and presents the output characteristics of some of the designed optimized structures.