The continuous downscaling of CMOS technologies over the last few decades resulted in higher Integrated Circuit (IC) density and performance. The emergence of FinFET technology has brought with it the same reliability issues as standard CMOS with the addition of a new prominent degradation mechanism. The same mechanisms still exist as for previous CMOS devices, including Bias Temperature Instability (BTI), Hot Carrier Degradation (HCD), Electro-migration (EM), and Body Effects. A new and equally important reliability issue for FinFET is the Self-heating, which is a crucial complication since thermal time-constant is generally much longer than the transistor switching times. FinFET technology is the newest technological paradigm that has emerged in the past decade, as downscaling reached beyond 20 nm, which happens also to be the estimated mean free path of electrons at room temperature in silicon. As such, the reliability physics of FinFET was modified in order to fit the newly developed transistor technology. This paper highlights the roles and impacts of these various effects and aging mechanisms on FinFET transistors compared to planar transistors on the basic approach of the physics of failure mechanisms to fit to a comprehensive aging model.