Personalized education—the systematic adaptation of instruction to individual learners—has been a long-striven goal. We review research on personalized education that has been conducted in the laboratory, in the classroom, and in digital learning environments. Across all learning environments, we find that personalization is most successful when relevant learner characteristics are measured repeatedly during the learning process and when these data are used to adapt instruction in a systematic way. Building on these observations, we propose a novel, dynamic framework of personalization that conceptualizes learners as dynamic entities that change during and in interaction with the instructional process. As these dynamics manifest on different timescales, so do the opportunities for instructional adaptations—ranging from setting appropriate learning goals at the macroscale to reacting to affective-motivational fluctuations at the microscale. We argue that instructional design needs to take these dynamics into account in order to adapt to a specific learner at a specific point in time. Finally, we provide some examples of successful, dynamic adaptations and discuss future directions that arise from a dynamic conceptualization of personalization.