Complex learning aims at the integration of knowledge, skills, and attitudes; the coordination of qualitatively different constituent skills; and the transfer of what is learned to daily life or work settings. Recent instructional theories stress authentic learning tasks as the driving force for learning; but due to the complexity of those tasks, learning may be hampered by the limited processing capacity of the human mind. In this article we present a framework for scaffolding practice and just-in-time information presentation, aiming to control cognitive load effectively. We briefly describe a design model for complex learning consistent with cognitive load theory. Theoretical and practical implications of the presented framework are discussed.Recent instructional theories tend to focus on authentic learning tasks that are based on real-life tasks as the driving force for learning (Merrill, 2002; Reigeluth, 1999a;. The general assumption is that such tasks help learners to integrate the knowledge, skills, and attitudes necessary for effective task performance; give them the opportunity to learn to coordinate constituent skills that make up complex task performance; and eventually enable them to transfer what is learned to their daily life or work settings. This focus on authentic, whole tasks can be found in practical educational approaches, such as project-based education, the case method, problem-based learning, and competency-based learning; and in theoretical models, such as Collins, Brown, and Newman's (1989) theory of cognitive apprenticeship learning, Jonassen's (1999) theory of constructive learning environments, Nelson's (1999) theory of collaborative problem solving, and Schank, Berman, and MacPerson's (1999) theory of goal-based scenario.A severe risk of all of these approaches is that learners have difficulties learning because they are overwhelmed by the task complexity. The aim of this article is to discuss managing cognitive load when rich learning tasks are used in education. First, methods for scaffolding whole-task practice are discussed, including simple-to-complex sequencing of learning tasks and the use of alternative tasks, such as worked-out examples and completion tasks. Second, methods for just-in-time information presentation are discussed, including timely presentation of information to support practice on learning tasks and the direct, step-by-step presentation of procedural information. Third, we briefly sketch an instructional design model for complex learning fully consistent with cognitive load theory (CLT). We conclude that CLT offers useful guidelines for decreasing intrinsic and extraneous cognitive load, so that sufficient processing capacity is left for genuine learning.