Complex learning aims at the integration of knowledge, skills, and attitudes; the coordination of qualitatively different constituent skills; and the transfer of what is learned to daily life or work settings. Recent instructional theories stress authentic learning tasks as the driving force for learning; but due to the complexity of those tasks, learning may be hampered by the limited processing capacity of the human mind. In this article we present a framework for scaffolding practice and just-in-time information presentation, aiming to control cognitive load effectively. We briefly describe a design model for complex learning consistent with cognitive load theory. Theoretical and practical implications of the presented framework are discussed.Recent instructional theories tend to focus on authentic learning tasks that are based on real-life tasks as the driving force for learning (Merrill, 2002; Reigeluth, 1999a;. The general assumption is that such tasks help learners to integrate the knowledge, skills, and attitudes necessary for effective task performance; give them the opportunity to learn to coordinate constituent skills that make up complex task performance; and eventually enable them to transfer what is learned to their daily life or work settings. This focus on authentic, whole tasks can be found in practical educational approaches, such as project-based education, the case method, problem-based learning, and competency-based learning; and in theoretical models, such as Collins, Brown, and Newman's (1989) theory of cognitive apprenticeship learning, Jonassen's (1999) theory of constructive learning environments, Nelson's (1999) theory of collaborative problem solving, and Schank, Berman, and MacPerson's (1999) theory of goal-based scenario.A severe risk of all of these approaches is that learners have difficulties learning because they are overwhelmed by the task complexity. The aim of this article is to discuss managing cognitive load when rich learning tasks are used in education. First, methods for scaffolding whole-task practice are discussed, including simple-to-complex sequencing of learning tasks and the use of alternative tasks, such as worked-out examples and completion tasks. Second, methods for just-in-time information presentation are discussed, including timely presentation of information to support practice on learning tasks and the direct, step-by-step presentation of procedural information. Third, we briefly sketch an instructional design model for complex learning fully consistent with cognitive load theory (CLT). We conclude that CLT offers useful guidelines for decreasing intrinsic and extraneous cognitive load, so that sufficient processing capacity is left for genuine learning.
This article presents a review of research comparing the effectiveness of individual learning environments with collaborative learning environments. In reviewing the literature, it was determined that there is no clear and unequivocal picture of how, when, and why the effectiveness of these two approaches to learning differ, a result which may be due to differing complexities of the learning tasks used in the research and the concomitant load imposed on the learner's cognitive system. Based upon cognitive load theory, it is argued that learning by an individual becomes less effective and efficient than learning by a group of individuals as task complexity increases. Dividing the processing of information across individuals is useful when the cognitive load is high because it allows information to be divided across a larger reservoir of cognitive capacity. Although such division requires that information be recombined and that processing be coordinated, under high load conditions, these costs are minimal compared to the gain achieved by this division of labor. In contrast, under low load conditions, an individual can adequately carry out the required processing activities, and the costs of recombination and coordination are relatively more substantial. Implications of these ideas for research and practice of collaborative learning are discussed.Keywords Collaborative learning . Cognitive load . Task complexity . Brain science Contemporary learning paradigms argue for the facilitation of lifelong learning in collaborative as opposed to individual environments. This is based upon the premise that the collaboration process will include discussion, argumentation, and reflection upon the task at hand, thus leading to deeper processing of the information and richer and more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.