2005
DOI: 10.1007/11577327_4
|View full text |Cite
|
Sign up to set email alerts
|

Self-stabilization of Byzantine Protocols

Abstract: Abstract. Awareness of the need for robustness in distributed systems increases as distributed systems become integral parts of day-to-day systems. Self-stabilizing while tolerating ongoing Byzantine faults are wishful properties of a distributed system. Many distributed tasks (e.g.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
27
0

Year Published

2006
2006
2018
2018

Publication Types

Select...
5
1

Relationship

3
3

Authors

Journals

citations
Cited by 27 publications
(27 citation statements)
references
References 22 publications
0
27
0
Order By: Relevance
“…We use the notation d ≡ δ + π. Thus, when the communication network is non-faulty, d is the upper bound on the elapsed real-time from the sending of a message by a non-faulty node until it is received and processed by every non-faulty node 4 . Note that n, f and d are fixed constants and thus nonfaulty nodes do not initialize with arbitrary values of these constants.…”
Section: The Sender's Identity and Content Of Any Message Being Receimentioning
confidence: 99%
See 2 more Smart Citations
“…We use the notation d ≡ δ + π. Thus, when the communication network is non-faulty, d is the upper bound on the elapsed real-time from the sending of a message by a non-faulty node until it is received and processed by every non-faulty node 4 . Note that n, f and d are fixed constants and thus nonfaulty nodes do not initialize with arbitrary values of these constants.…”
Section: The Sender's Identity and Content Of Any Message Being Receimentioning
confidence: 99%
“…Essentially, we assume that messages among correct nodes are delivered within the time bounds. 4 Nodes that were not faulty when the message was sent. 5 We assume ∆ net ≥ d. Hence, if the system is not coherent then there can be an unbounded number of concurrent faulty nodes; the turnover rate between the faulty and non-faulty nodes can be arbitrarily large and the communication network may deliver messages with unbounded delays, if at all.…”
Section: The Sender's Identity and Content Of Any Message Being Receimentioning
confidence: 99%
See 1 more Smart Citation
“…However, a self-stabilizing system can be disturbed by Byzantine processes after reaching a c-legitimate and c-stable configuration. The c-disruption represents the period where c-correct processes are disturbed by Byzantine processes and is defined as follows 3. ρ 0 is c-legitimate for spec and c-stable, and 4. ρ t is the first configuration after ρ 0 such that ρ t is c-legitimate for spec and c-stable.…”
Section: Definition 1 (C-correct Process)mentioning
confidence: 99%
“…Self-stabilization [4,6,15] is a versatile technique that permits forward recovery from any kind of transient faults, while Byzantine Fault-tolerance [10] is traditionally used to mask the effect of a limited number of malicious faults. Making distributed systems tolerant to both transient and malicious faults is appealing yet proved difficult [7,3,13] as impossibility results are expected in many cases.…”
Section: Introductionmentioning
confidence: 99%