Background
Participatory surveillance systems augment traditional surveillance systems through bidirectional community engagement. The digital platform evolution has enabled the expansion of participatory surveillance systems, globally, for the detection of health events impacting people, animals, plants, and the environment, in other words, across the entire One Health spectrum.
Objective
The aim of this landscape was to identify and provide descriptive information regarding system focus, geography, users, technology, information shared, and perceived impact of ongoing participatory surveillance systems across the One Health spectrum.
Methods
This landscape began with a systematic literature review to identify potential ongoing participatory surveillance systems. A survey was sent to collect standardized data from the contacts of systems identified in the literature review and through direct outreach to stakeholders, experts, and professional organizations. Descriptive analyses of survey and literature review results were conducted across the programs.
Results
The landscape identified 60 ongoing single-sector and multisector participatory surveillance systems spanning five continents. Of these, 29 (48%) include data on human health, 26 (43%) include data on environmental health, and 24 (40%) include data on animal health. In total, 16 (27%) systems are multisectoral; of these, 9 (56%) collect animal and environmental health data; 3 (19%) collect human, animal, and environmental health data; 2 (13%) collect human and environmental health data; and 2 (13%) collect human and animal health data. Out of 60 systems, 31 (52%) are designed to cover a national scale, compared to those with a subnational (n=19, 32%) or multinational (n=10, 17%) focus. All systems use some form of digital technology. Email communication or websites (n=40, 67%) and smartphones (n=29, 48%) are the most common technologies used, with some using both. Systems have capabilities to download geolocation data (n=31, 52%), photographs (n=29, 48%), and videos (n=6, 10%), and can incorporate lab data or sample collection (n=15, 25%). In sharing information back with users, most use visualization, such as maps (n=43, 72%); training and educational materials (n=37, 62%); newsletters, blogs, and emails (n=34, 57%); and disease prevention information (n=32, 53%). Out of the 46 systems responding to the survey regarding perceived impacts of their systems, 36 (78%) noted “improved community knowledge and understanding” and 31 (67%) noted “earlier detection.”
Conclusions
The landscape demonstrated the breadth of applicability of participatory surveillance around the world to collect data from community members and trained volunteers in order to inform the detection of events, from invasive plant pests to weekly influenza symptoms. Acknowledging the importance of bidirectionality of information, these systems simultaneously share findings back with the users. Such directly engaged community detection systems capture events early and provide opportunities to stop outbreaks quickly.