BackgroundThe 2005 International Health Regulations (IHRs) established parameters for event assessments and notifications that may constitute public health emergencies of international concern. These requirements and parameters opened up space for the use of nonofficial mechanisms (such as websites, blogs, and social networks) and technological improvements of communication that can streamline the detection, monitoring, and response to health problems, and thus reduce damage caused by these problems. Specifically, the revised IHR created space for participatory surveillance to function, in addition to the traditional surveillance mechanisms of detection, monitoring, and response. Participatory surveillance is based on crowdsourcing methods that collect information from society and then return the collective knowledge gained from that information back to society. The spread of digital social networks and wiki-style knowledge platforms has created a very favorable environment for this model of production and social control of information.ObjectiveThe aim of this study was to describe the use of a participatory surveillance app, Healthy Cup, for the early detection of acute disease outbreaks during the Fédération Internationale de Football Association (FIFA) World Cup 2014. Our focus was on three specific syndromes (respiratory, diarrheal, and rash) related to six diseases that were considered important in a mass gathering context (influenza, measles, rubella, cholera, acute diarrhea, and dengue fever).MethodsFrom May 12 to July 13, 2014, users from anywhere in the world were able to download the Healthy Cup app and record their health condition, reporting whether they were good, very good, ill, or very ill. For users that reported being ill or very ill, a screen with a list of 10 symptoms was displayed. Participatory surveillance allows for the real-time identification of aggregates of symptoms that indicate possible cases of infectious diseases.ResultsFrom May 12 through July 13, 2014, there were 9434 downloads of the Healthy Cup app and 7155 (75.84%) registered users. Among the registered users, 4706 (4706/7155, 65.77%) were active users who posted a total of 47,879 times during the study period. The maximum number of users that signed up in one day occurred on May 30, 2014, the day that the app was officially launched by the Minister of Health during a press conference. During this event, the Minister of Health announced the special government program Health in the World Cup on national television media. On that date, 3633 logins were recorded, which accounted for more than half of all sign-ups across the entire duration of the study (50.78%, 3633/7155).ConclusionsParticipatory surveillance through community engagement is an innovative way to conduct epidemiological surveillance. Compared to traditional epidemiological surveillance, advantages include lower costs of data acquisition, timeliness of information collected and shared, platform scalability, and capacity for integration between the population being se...
BackgroundIn Brazil, schistosomiasis mansoni infection is an endemic disease that mainly affects the country’s rural populations who carry out domestic and social activities in rivers and water accumulations that provide shelter for the snails of the disease. The process of rural migration to urban centers and the disorderly occupation of natural environments by these populations from endemic areas have favored expansion of schistosomiasis to locations that had been considered to be disease-free. Based on environmental changes that have occurred in consequent to an occupation and urbanization process in the locality of Porto de Galinhas, the present study sought to identify the relationship between those chances, measure by remote-sensing techniques, and establish a new endemic area for schistosomiasis on the coast of Pernambuco State - Brazil.MethodsTo gather prevalence data, two parasitological census surveys were conducted (2000 and 2010) using the Kato-Katz technique. Two malacological surveys were also conducted in the same years in order to define the density and infection rate of the intermediate host. Based on these data, spatial analyses were done, resulting in maps of the risk of disease transmission. To ascertain the environmental changes that have occurred at the locality, images from the QuickBird satellite were analyzed, thus resulting in land use maps.ResultsOver this 10-year period, the foci of schistosomiasis became more concentrated in the Salinas district. This area was considered to be at the greatest risk of schistosomiasis transmission and had the highest prevalence rates over this period. The study illustrated that this was the area most affected by the environmental changes resulting from the disorderly urbanization process, which gave rise to unsanitary environments that favored the establishment and maintenance of foci of schistosomiasis transmission, thereby consolidating the process of expansion and endemization of this parasitosis.
BackgroundMalaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority.ObjectiveThe objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development.MethodsThe system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells.ResultsAs a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly.ConclusionsAccessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment.
Objectives This study aimed to identify, describe and analyze priority areas for COVID-19 testing combining participatory surveillance and traditional surveillance. Design It was carried out a descriptive transversal study in the city of Caruaru, Pernambuco state, Brazil, within the period of 20/02/2020 to 05/05/2020. Data included all official reports for influenza-like illness notified by the municipality health department and the self-reports collected through the participatory surveillance platform Brasil Sem Corona. Methods We used linear regression and loess regression to verify a correlation between Participatory Surveillance (PS) and Traditional Surveillance (TS). Also a spatial scanning approach was deployed in order to identify risk clusters for COVID-19. Results In Caruaru, the PS had 861 active users, presenting an average of 1.2 reports per user per week. The platform Brasil Sem Corona started on March 20th and since then, has been officially used by the Caruaru health authority to improve the quality of information from the traditional surveillance system. Regarding the respiratory syndrome cases from TS, 1588 individuals were positive for this clinical outcome. The spatial scanning analysis detected 18 clusters and 6 of them presented statistical significance (p-value < 0.1). Clusters 3 and 4 presented an overlapping area that was chosen by the local authority to deploy the COVID-19 serology, where 50 individuals were tested. From there, 32 % (n = 16) presented reagent results for antibodies related to COVID-19. Conclusion Participatory surveillance is an effective epidemiological method to complement the traditional surveillance system in response to the COVID-19 pandemic by adding real-time spatial data to detect priority areas for COVID-19 testing.
Background With the evolution of digital media, areas such as public health are adding new platforms to complement traditional systems of epidemiological surveillance. Participatory surveillance and digital epidemiology have become innovative tools for the construction of epidemiological landscapes with citizens’ participation, improving traditional sources of information. Strategies such as these promote the timely detection of warning signs for outbreaks and epidemics in the region. Objective This study aims to describe the participatory surveillance platform Guardians of Health, which was used in a project conducted during the 2016 Olympic and Paralympic Games in Rio de Janeiro, Brazil, and officially used by the Brazilian Ministry of Health for the monitoring of outbreaks and epidemics. Methods This is a descriptive study carried out using secondary data from Guardians of Health available in a public digital repository. Based on syndromic signals, the information subsidy for decision making by policy makers and health managers becomes more dynamic and assertive. This type of information source can be used as an early route to understand the epidemiological scenario. Results The main result of this research was demonstrating the use of the participatory surveillance platform as an additional source of information for the epidemiological surveillance performed in Brazil during a mass gathering. The platform Guardians of Health had 7848 users who generated 12,746 reports about their health status. Among these reports, the following were identified: 161 users with diarrheal syndrome, 68 users with respiratory syndrome, and 145 users with rash syndrome. Conclusions It is hoped that epidemiological surveillance professionals, researchers, managers, and workers become aware of, and allow themselves to use, new tools that improve information management for decision making and knowledge production. This way, we may follow the path for a more intelligent, efficient, and pragmatic disease control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.