2014
DOI: 10.1016/j.chb.2013.05.024
|View full text |Cite
|
Sign up to set email alerts
|

Sentiment analysis in Facebook and its application to e-learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
236
1
13

Year Published

2015
2015
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 511 publications
(262 citation statements)
references
References 27 publications
2
236
1
13
Order By: Relevance
“…Asimismo, hay investigaciones (Altrabsheh, 2014;Ortigosa, 2014) para monitorear y analizar en tiempo real los comentarios que los estudiantes hacen en redes sociales con el fin de mejorar las clases de los docentes. Además, algunos autores (Bravo, 2013) documentan el uso de la red social Twitter como una herramienta complementaria en la educación colaborativa y el aprendizaje informal en el área de ingeniería.…”
Section: Trabajos Relacionadosunclassified
“…Asimismo, hay investigaciones (Altrabsheh, 2014;Ortigosa, 2014) para monitorear y analizar en tiempo real los comentarios que los estudiantes hacen en redes sociales con el fin de mejorar las clases de los docentes. Además, algunos autores (Bravo, 2013) documentan el uso de la red social Twitter como una herramienta complementaria en la educación colaborativa y el aprendizaje informal en el área de ingeniería.…”
Section: Trabajos Relacionadosunclassified
“…Li et al [17] set up a system to analyze the market impact by combining the stock price and news sentiment. Ortigosa et al [4] performed sentiment classification and sentiment change detection on Facebook comments using a hybrid approach. They combined lexicon-based and machine-learning methods by considering a lexicon as the source of features and using a classification model to evaluate the lexicon; this approach is similar to the one used in our experiments in this study.…”
Section: Sentiment Classificationmentioning
confidence: 99%
“…A hybrid approach combines both the above approaches and has a relative 2 Wireless Communications and Mobile Computing advantage in sentiment analysis. Ortigosa et al [4] developed a lexicon from a corpus and then chose sentiment words along with the labeled class as the input features for a machine-learning classification method. Sentiment lexicons play a key role in a majority of the above methods.…”
Section: Introductionmentioning
confidence: 99%
“…Another paper [9] studied the sentiment analysis in e-learning, and in the sentiment detection part they combined two approaches: machine learning approach and lexicon-based approach. The lexicon-based approach consisted of using a dictionary of keywords marked with the sentiment they represent and finding using the keyword search the sentiment of each phrase splitting it into tokens.…”
Section: Literature Reviewmentioning
confidence: 99%