Background. Guillain-Barré Syndrome (GBS) is a potentially fatal autoimmune neurological disorder. The severity varies among the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AMAN), Acute Motor Sensory Axonal Neuropathy (AMSAN), and Miller-Fisher Syndrome (MF). A proper subtype identification may help to promptly carry out adequate treatment in patients. Method. We perform experiments with 15 single classifiers in two scenarios: four subtypes' classification and One versus All (OvA) classification. We used a dataset with the 16 relevant features identified in a previous phase. Performance evaluation is made by 10-fold cross validation (10-FCV). Typical classification performance measures are used. A statistical test is conducted in order to identify the top five classifiers for each case. Results. In four GBS subtypes' classification, half of the classifiers investigated in this study obtained an average accuracy above 0.90. In OvA classification, the two subtypes with the largest number of instances resulted in the best classification results. Conclusions. This study represents a comprehensive effort on creating a predictive model for Guillain-Barré Syndrome subtypes. Also, the analysis performed in this work provides insight about the best single classifiers for each classification case.
Abstract-The use of bagging is explored to create an ensemble of fuzzy classifiers. The learning algorithm used was ANFIS (Adaptive Neuro-Fuzzy Inference Systems). We compare results from bagging to those of a single classifier using both crisp and fuzzy classifier combination methods. Results on 20 data sets show that bagging results in a significantly more accurate classifier.
Gene-expression microarray datasets often consist of a limited number of samples with a large number of gene-expression measurements, usually on the order of thousands. Therefore, dimensionality reduction is critical prior to any classification task. In this work, the iterative feature perturbation method (IFP), an embedded gene selector, is introduced and applied to four microarray cancer datasets: colon cancer, leukemia, Moffitt colon cancer, and lung cancer. We compare results obtained by IFP to those of support vector machine-recursive feature elimination (SVM-RFE) and the t-test as a feature filter using a linear support vector machine as the base classifier. Analysis of the intersection of gene sets selected by the three methods across the four datasets was done. Additional experiments included an initial pre-selection of the top 200 genes based on their p values. IFP and SVM-RFE were then applied on the reduced feature sets. These results showed up to 3.32% average performance improvement for IFP across the four datasets. A statistical analysis (using the Friedman/Holm test) for both scenarios showed the highest accuracies came from the t-test as a filter on experiments without gene pre-selection. IFP and SVM-RFE had greater classification accuracy after gene pre-selection. Analysis showed the t-test is a good gene selector for microarray data. IFP and SVM-RFE showed performance improvement on a reduced by t-test dataset. The IFP approach resulted in comparable or superior average class accuracy when compared to SVM-RFE on three of the four datasets. The same or similar accuracies can be obtained with different sets of genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.