Background. Guillain-Barré Syndrome (GBS) is a potentially fatal autoimmune neurological disorder. The severity varies among the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AMAN), Acute Motor Sensory Axonal Neuropathy (AMSAN), and Miller-Fisher Syndrome (MF). A proper subtype identification may help to promptly carry out adequate treatment in patients. Method. We perform experiments with 15 single classifiers in two scenarios: four subtypes' classification and One versus All (OvA) classification. We used a dataset with the 16 relevant features identified in a previous phase. Performance evaluation is made by 10-fold cross validation (10-FCV). Typical classification performance measures are used. A statistical test is conducted in order to identify the top five classifiers for each case. Results. In four GBS subtypes' classification, half of the classifiers investigated in this study obtained an average accuracy above 0.90. In OvA classification, the two subtypes with the largest number of instances resulted in the best classification results. Conclusions. This study represents a comprehensive effort on creating a predictive model for Guillain-Barré Syndrome subtypes. Also, the analysis performed in this work provides insight about the best single classifiers for each classification case.
The adoption of electronic social networks as an essential way of communication has become one of the most dangerous methods to hurt people’s feelings. The Internet and the proliferation of this kind of virtual community have caused severe negative consequences to the welfare of society, creating a social problem identified as cyber-aggression, or in some cases called cyber-bullying. This paper presents research to classify situations of cyber-aggression on social networks, specifically for Spanish-language users of Mexico. We applied Random Forest, Variable Importance Measures (VIMs), and OneR to support the classification of offensive comments in three particular cases of cyber-aggression: racism, violence based on sexual orientation, and violence against women. Experimental results with OneR improve the comment classification process of the three cyber-aggression cases, with more than 90% accuracy. The accurate classification of cyber-aggression comments can help to take measures to diminish this phenomenon.
Metabolic syndrome is a health condition that increases the risk of heart diseases, diabetes, and stroke. The prognostic variables that identify this syndrome have already been defined by the World Health Organization (WHO), the National Cholesterol Education Program Third Adult Treatment Panel (ATP III) as well as by the International Diabetes Federation. According to these guides, there is some symmetry among anthropometric prognostic variables to classify abdominal obesity in people with metabolic syndrome. However, some appear to be more sensitive than others, nevertheless, these proposed definitions have failed to appropriately classify a specific population or ethnic group. In this work, we used the ATP III criteria as the framework with the purpose to rank the health parameters (clinical and anthropometric measurements, lifestyle data, and blood tests) from a data set of 2942 participants of Mexico City Tlalpan 2020 cohort, applying machine learning algorithms. We aimed to find the most appropriate prognostic variables to classify Mexicans with metabolic syndrome. The criteria of sensitivity, specificity, and balanced accuracy were used for validation. The ATP III using Waist-to-Height-Ratio (WHtR) as an anthropometric index for the diagnosis of abdominal obesity achieved better performance in classification than waist or body mass index. Further work is needed to assess its precision as a classification tool for Metabolic Syndrome in a Mexican population.
An Isolated Microgrid (IMG) is an electrical distribution network combined with modern information technologies aiming at reducing costs and pollution to the environment. In this article, we implement the Bacterial Foraging Optimization Algorithm (BFOA) to optimize an IMG model, which includes renewable energy sources, such as wind and solar, as well as a conventional generation unit based on diesel fuel. Two novel versions of the BFOA were implemented and tested: Two-Swim Modified BFOA (TS-MBFOA), and Normalized TS-MBFOA (NTS-MBFOA). In a first experiment, the TS-MBFOA parameters were calibrated through a set of 87 independent runs. In a second experiment, 30 independent runs of both TS-MBFOA and NTS-MBFOA were conducted to compare their performance on minimizing the IMG using the best parameter tuning. Results showed that TS-MBFOA obtained better numerical solutions compared to NTS-MBFOA and LSHADE-CV, an Evolutionary Algorithm, found in the literature. However, the best solution found by NTS-MBFOA is better from a mechatronic point of view because it favors the lifetime of the IMG, resulting in economic savings in the long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.