2021
DOI: 10.22146/ijccs.66016
|View full text |Cite
|
Sign up to set email alerts
|

Sentiment Analysis Of Energy Independence Tweets Using Simple Recurrent Neural Network

Abstract: Sentiment analysis is part of computational research that extracts textual data to obtain positive, or negative values related to a topic. In recent research, data are commonly acquired from social media, including Twitter, where users often provide their personal opinion about a particular subject. Energy independence was once a trending topic discussed in Indonesia, as the opinions are diverse, pros and cons, making it interesting to be analyzed. Deep learning is a branch of machine learning consisting of hi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 6 publications
0
1
0
1
Order By: Relevance
“…Based on literature studies, most of the previous studies were only related to one SDGs point. SDGs 1 [14], [15]; SDGs 2 [16], [17]; SDGs 3 [4], [18], [19], [20], [21], [22]; SDGs 4 [6], [23], [24], [25], [26]; SDGs 5 [27], [28]; SDGs 7 [29], [30]; SDGs 8 [3], [8], [31], [32]; SDGs 9 [33]; SDGs 10 [34], [35]; SDGs 11. [36]; SDGs 12 [37], [38]; SDGs 13 [39], [40]; SDGs 14 [41], [42]; SDGs 16 [43]; and SDGs 17 [44].…”
Section: Methodsmentioning
confidence: 99%
“…Based on literature studies, most of the previous studies were only related to one SDGs point. SDGs 1 [14], [15]; SDGs 2 [16], [17]; SDGs 3 [4], [18], [19], [20], [21], [22]; SDGs 4 [6], [23], [24], [25], [26]; SDGs 5 [27], [28]; SDGs 7 [29], [30]; SDGs 8 [3], [8], [31], [32]; SDGs 9 [33]; SDGs 10 [34], [35]; SDGs 11. [36]; SDGs 12 [37], [38]; SDGs 13 [39], [40]; SDGs 14 [41], [42]; SDGs 16 [43]; and SDGs 17 [44].…”
Section: Methodsmentioning
confidence: 99%
“…Tabel confusion matrix digunakan untuk mengukur kinerja suatu metode klasifikasi dengan menghitung nilai akurasi (accuracy), presisi (precision), recall, dan f1-score [13]. Pada Tabel 3 maka dapat disimpulkan bahwa hasil dari perhitungan klasifikasi dengan menggunakan algoritme Naïve Bayes menggunakan pembagian 75% data latih dan 25% data uji menghasilkan rata-rata akurasi sebesar 89,33%, presisi sebesar 91,23%, recall sebesar 97,39%, dan f1-score sebesar 94,13%.…”
Section: Tabel 2 Confusion Matrixunclassified