With the ever increase in social media usage, it has become necessary to combat the spread of false information and decrease the reliance of information retrieval from such sources. Social platforms are under constant pressure to come up with efficient methods to solve this problem because users' interaction with fake and unreliable news leads to its spread at an individual level. This spreading of misinformation adversely affects the perception about an important activity, and as such, it needs to be dealt with using a modern approach. In this paper, we collect 1356 news instances from various users via Twitter and media sources such as PolitiFact and create several datasets for the real and the fake news stories. Our study compares multiple state‐of‐the‐art approaches such as convolutional neural networks (CNNs), long short‐term memories (LSTMs), ensemble methods, and attention mechanisms. We conclude that CNN + bidirectional LSTM ensembled network with attention mechanism achieved the highest accuracy of 88.78%, whereas Ko et al tackled the fake news identification problem and achieved a detection rate of 85%.
Sentiment analysis is part of computational research that extracts textual data to obtain positive, or negative values related to a topic. In recent research, data are commonly acquired from social media, including Twitter, where users often provide their personal opinion about a particular subject. Energy independence was once a trending topic discussed in Indonesia, as the opinions are diverse, pros and cons, making it interesting to be analyzed. Deep learning is a branch of machine learning consisting of hidden layers of neural networks by applying non-linear transformations and high-level model abstractions in large databases. The recurrent neural network (RNN) is a deep learning method that processes data repeatedly, primarily suitable for handwriting, multi-word data, or voice recognition. This study compares three algorithms: Simple Neural Network, Bernoulli Naive Bayes, and Long Short-Term Memory (LSTM) in sentiment analysis using the energy independence data from Twitter. Based on the results, the Simple Recurrent Neural Network shows the best performance with an accuracy value of 78% compared to Bernoulli Naive Bayes value of 67% and LSTM with an accuracy value of 75%. Keywords— Sentiment Analysis; Simple RNN; LSTM; Bernoulli Naive Bayes; Energy Independence;
The fingerprint presentation attack is still a major challenge in biometric systems due to its increased applications worldwide. In the past, researchers used Fingerprint Presentation Attack Detection (FPAD) for user authentication, but it suffers from reliable authentication due to less focus on reducing the ‘error rate’. In this paper, we proposed an algorithm, based on referential image quality (RIQ)-metrics and minutiae count using neural network, k-NN and SVM for FPAD. We evaluate and validate the error rate reduction with different machine learning models on the public domain, such as LivDet crossmatch dataset2015 and achieved an accuracy of 88% with a neural network, 88.6% with k-NN and 88.8% using SVM. In addition, the average classification error (ACE) score is 0.1197 for ANN, 0.1138 for k-NN and 0.1117 for SVM. Thus, the results obtained show that it was achieved a reasonable accuracy with a low ACE score with respect to other state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.