SummaryParasympathetic preganglionic cardiac vagal neurons (CVNs) which dominate the control of heart rate are located within the nucleus ambiguus (NA). Serotonin (5HT), and in particular 5HT2 receptors, play an important role in cardiovascular function in the brainstem. However, there is a lack of information on the mechanisms of action of 5HT2 receptors in modulating parasympathetic cardiac activity. This study tests whether activation of 5HT2 receptors alters excitatory glutamatergic and purinergic neurotransmission to CVNs. Application of α-methyl-5-hydroxytryptamine (α-Me-5HT), a 5HT2 agonist, reversibly increased both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in CVNs. Similar responses were obtained with alphamethyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine hydrochloride (BW723C86), and mchlorophenylpiperazine (m-CPP), 5HT2B and 5HT2B/C receptor agonists, respectively. The facilitation evoked by α-Me-5HT was prevented by the 5HT2B/C receptor antagonist SB206553 hydrochloride (SB206553). Interestingly, the blockage of both NMDA and non-NMDA glutamatergic receptors did not prevent α-Me-5HT-evoked facilitation of mEPSCs, however, the responses were blocked by the P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). The responses evoked by α-Me-5HT were mimicked by application of α,β-methylene ATP (α,β-Me-ATP), a P2X receptor agonist, which were also blocked by PPADS. In summary, these results indicate activation of 5HT2 receptors facilitates excitatory purinergic, but not glutamatergic, neurotransmission to CVNs.