Background
Long noncoding RNAs (lncRNAs) OGFRP1 is up-regulated in endometrial cancer and cervical carcinoma, and OGFRP1 suppression inhibits the malignant behavior of cancer cells. Here, we evaluated the expression pattern, biological function and potential mechanism of OGFRP1 in non-small cell lung cancer (NSCLC).
Methods
The expression of target genes in 25 pairs of clinically collected NSCLC and normal lung tissue samples was detected by qRT-PCR or western blot. We screened the siRNA (siOGFRP1) to down-regulate the expression of OGFRP1 in A549 and H1299 cells. The biological function of A549 and H1299 cells were examined by CCK8, wound healing and transwell assays. The molecular mechanism of OGFRP1 was further explored.
Results
The expression of OGFRP1 in NSCLC tissues were higher than that in normal lung tissue. siOGFRP1 inhibited the proliferation, migration and invasion of A549 and H1299 cells. In addition, the expression of EMT-related and apoptosis-related proteins was changed by siOGFRP1 transfection. OGFRP1 can directly interact with miR-4640-5p, and siOGFRP1 increased the level of miR-4640-5p. Moreover, miR-4640-5p could directly bind to the 3’ UTR region of eIF5A mRNA. eIF5A was highly expressed in NSCLC tissues, and predicted a poor prognosis. In addition, the expression of miR-4640-5p and eIF5A in NSCLC tissues were negatively correlated, while the expression of OGFRP1 and eIF5A were positively correlated. Knockdown of OGFRP1 inhibited the expression of eIF5A, while transfection of miR-4640-5p inhibitor up-regulated the expression of eIF5A.
Conclusions
Taken together, we demonstrated that down-regulation of OGFRP1 inhibited the progression of NSCLC through miR-4640-5p/eIF5A axis.