The past decade has witnessed the fast development of silicon photonics. Their superior performance compared with the electronic counterpart has made the silicon photonic device an excellent candidate for data communication, sensing, and computation. Most recently, there has been growing interest in implementing these devices in radiation harsh environments, such as nuclear reactors and outer space, where significant doses of high energy irradiation are present. Therefore, it is of paramount importance to fill in the “knowledge gap” of radiation induced damage in silicon photonic devices and provide mitigation solutions to fulfill the device endurance requirement. In this review, we introduce the damage mechanism and provide a survey on radiation induced effects on silicon photonic devices, including lasers, modulators, detectors, and passive waveguides. Finally, the mitigation strategies are discussed.