Cancer treatment commonly relies on chemotherapy. This treatment faces many challenges, including treatment specificity and undesired side effects. To address these, a Dox-loaded Chol-aptamer molecular hybrid (Dox-CAH) was developed. This multivalent interaction system combines the key function of each integrated species: doxorubicin, cholesterol, and two aptamers binding to nucleolin and platelet-derived growth factor BB (PDGF-BB). The study has four stages: preparation of CAH via oligonucleotide hybridization, intercalation of doxorubicin into CAH, verification of CAH binding on SW480 by fluorescence microscopy and flow cytometry, and investigation of effect of Dox-CAH on SW480 proliferation. CAH was successfully prepared, as confirmed by electrophoresis. Flow cytometry and fluorescence microscopy demonstrated CAH binding to SW480, due to the presence of the AS1411 aptamer. This molecular hybrid exhibited specific binding because it did not bind to CCD 841 CoN. CAH binding to PDGF-BB compromises its function, as shown by enzymelinked immunosorbent assay (ELISA) and cell assay. The DNA duplex in this molecular hybrid reduces the cytotoxicity of the Dox-CAH. Binding and the reduction of Dox-CAH toxicity may improve treatment specificity and minimize side effects. Dox-CAH is a model for more effective anticancer therapy, allowing incorporation of chemotherapeutic drugs and recognition elements.