As a powerful atomic force microscopy-based nanotechnological tool, dip-pen nanolithography (DPN) has provided an ideal direct-write "constructive" lithographic tool that allows materials to be patterned from DPN tips onto a surface with high registration and sub-15 nm resolution. In the past few decades, DPN has been enormously developed for studying the patterning of inorganic, organic, and biological materials onto a variety of substrates. The focus of this review is on the development of three types of DPN: classic, liquid, and matrix-assisted DPN. Such development mainly includes the following aspects: the comparisons of three types of DPN, the effect factors and basic mechanisms of three types of DPN, and the application progress of three types of DPN.