Aluminum profile surface defects can greatly affect the performance, safety and reliability of products. Traditional human-based visual inspection is low accuracy and time consuming, and machine vision-based methods depend on hand-crafted features which need to be carefully designed and lack robustness. To recognize the multiple types of defects with various size on aluminum profiles, a multiscale defect detection network based on deep learning is proposed. Then, the network is trained and evaluated using aluminum profile surface defects images. Results show 84.6%, 48.5%, 96.9%, 97.9%, 96.9%, 42.5%, 47.2%, 100%, 100%, 43.3% average precision(AP) for the ten defect categories, respectively, with a mean AP of 75.8%, which illustrate the effectiveness of the network in aluminum profile surface defects detection. In addition, saliency maps also show the feasibility of the proposed network.