The performance of mechanical products is closely related to their key feature errors. It is essential to predict the final assembly variation by assembly variation analysis to ensure product performance. Rigid–flexible hybrid construction is a common type of mechanical product. Existing methods of variation analysis in which rigid and flexible parts are calculated separately are difficult to meet the requirements of these complicated mechanical products. Another methodology is a result of linear superposition with rigid and flexible errors, which cannot reveal the quantitative relationship between product assembly variation and part manufacturing error. Therefore, a kind of complicated products’ assembly variation analysis method based on rigid–flexible vector loop is proposed in this article. First, shapes of part surfaces and sidelines are estimated according to different tolerance types. Probability density distributions of discrete feature points on the surface are calculated based on the tolerance field size with statistical methods. Second, flexible parts surface is discretized into a set of multi-segment vectors to build vector-loop model. Each vector can be orthogonally decomposed into the components representing position information and error size. Combining the multi-segment vector set of flexible part with traditional rigid part vector, a uniform vector-loop model is constructed to represent rigid and flexible complicated products. Probability density distributions of discrete feature points on part surface are regarded as inputs to calculate assembly variation values of products’ key features. Compared with the existing methods, this method applies to the assembly variation prediction of complicated products that consist of both rigid and flexible parts. Impact of each rigid and flexible part’s manufacturing error on product assembly variation can be determined, and it provides the foundation of parts tolerance optimization design. Finally, an assembly example of phased array antenna verifies effectiveness of the proposed method in this article.