Fast, simple, and accurate CE method enabling determination of lipoic acid (LA) in human urine has been developed and validated. LA is a disulfide-containing natural compound absorbed from the organism's diet. Due to powerful antioxidant activity, LA has been used for prevention and treatment of various diseases and disorders, e.g. cardiovascular diseases, neurodegenerative disorders, and cancer. The proposed analytical procedure consists of liquid-liquid sample extraction, reduction of LA with tris(2-carboxyethyl)phosphine, derivatization with 1-benzyl-2-chloropyridinium bromide (BCPB) followed by field amplified sample injection stacking, capillary zone electrophoresis separation, and ultraviolet-absorbance detection of LA-BCPB derivative at 322 nm. Effective baseline electrophoretic separation was achieved within 6 min under the separation voltage of 20 kV (∼80 μA) using a standard fused-silica capillary (effective length 51.5 cm, 75 μm id) and BGE consisted of 0.05 mol/L borate buffer adjusted to pH 9. The experimentally determined limit of detection for LA in urine was 1.2 μmol/L. The calibration curve obtained for LA in urine showed linearity in the range 2.5-80 μmol/L, with R 0.9998. The relative standard deviation of the points of the calibration curve was lower than 10%. The analytical procedure was successfully applied to analysis of real urine samples from seven healthy volunteers who received single 100 mg dose of LA.