This work focuses on the development of a Pt/Re/CeO2-based structured catalyst for a single stage water–gas shift process. In the first part of the work, the activity in water–gas shift reactions was evaluated for three Pt/Re/CeO2-based powder catalysts, with Pt/Re ratio equal to 1/1, 1/2 ad 2/1 and total loading ≈ 1 wt%. The catalysts were prepared by sequential dry impregnation of commercial ceria, with the salts precursors of rhenium and platinum; the activity tests were carried out by feeding a reacting mixture with a variable CO/H2O ratio, equal to 7/14, 7/20 and 7/24, and the kinetic parameters were determined. The model which better described the experimental results involves the water–gas shift (WGS) reaction and CO as well as CO2 methanation. The preliminary tests showed that the catalyst with the Pt/Re ratio equal to 2/1 had the best performance, and this was selected for further investigations. In the second part of the work, a structured catalyst, obtained by coating a commercial aluminum alloy foam with the chosen catalytic formulation, was prepared and tested in different reaction conditions. The results demonstrated that a single stage water–gas shift process is achievable, obtaining a hydrogen production rate of 18.7 mmol/min at 685 K, at τ = 53 ms, by feeding a simulated reformate gas mixture (37.61 vol% H2, 9.31 vol% CO2, 9.31 vol% CO, 42.19 vol% H2O, 1.37 vol% CH4).