2019
DOI: 10.1109/tns.2019.2944944
|View full text |Cite
|
Sign up to set email alerts
|

Single-Event Effects in SiC Double-Trench MOSFETs

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
9
1

Relationship

2
8

Authors

Journals

citations
Cited by 38 publications
(13 citation statements)
references
References 32 publications
0
3
0
Order By: Relevance
“…Ball等 [11] 通过仿真模拟重离子入射SiC MOSFET 器件, 发现离子入射诱导产生高局域态能量脉冲导 致器件性能退化或者烧毁; 同时该团队 [12] 通过实 验对比和仿真模拟发现, 更厚的外延层、更低的掺 杂浓度可以显著增大器件SEB阈值电压. 目前商用的SiC MOSFET分为平面栅型和 沟槽型两种结构 [13] , 在相同元胞尺寸下, 双沟槽型 碳化硅MOSFET (double-trench MOSFET, DT-MOSFET)相比于传统平面栅型碳化硅MOSFET (vertical double-diffused MOSFET, VDMOSFET), 具有更高的沟道迁移率、更低的比导通电阻以及更 大的电流密度, 优异的性能使得SiC DTMOSFET 具有更广阔的应用前景 [14][15][16][17] . 然而, 目前大多数 研究都是针对SiC VDMOSFET的单粒子效应, 关于SiC DTMOSFET的单粒子效应研究较少.…”
Section: 不同Let值的重离子实验发现器件seb阈值电 压会随入射离子Let值的增大而显著降低 当unclassified
“…Ball等 [11] 通过仿真模拟重离子入射SiC MOSFET 器件, 发现离子入射诱导产生高局域态能量脉冲导 致器件性能退化或者烧毁; 同时该团队 [12] 通过实 验对比和仿真模拟发现, 更厚的外延层、更低的掺 杂浓度可以显著增大器件SEB阈值电压. 目前商用的SiC MOSFET分为平面栅型和 沟槽型两种结构 [13] , 在相同元胞尺寸下, 双沟槽型 碳化硅MOSFET (double-trench MOSFET, DT-MOSFET)相比于传统平面栅型碳化硅MOSFET (vertical double-diffused MOSFET, VDMOSFET), 具有更高的沟道迁移率、更低的比导通电阻以及更 大的电流密度, 优异的性能使得SiC DTMOSFET 具有更广阔的应用前景 [14][15][16][17] . 然而, 目前大多数 研究都是针对SiC VDMOSFET的单粒子效应, 关于SiC DTMOSFET的单粒子效应研究较少.…”
Section: 不同Let值的重离子实验发现器件seb阈值电 压会随入射离子Let值的增大而显著降低 当unclassified
“…The device biased at V GS = 0 V suffers from a vertical strike in the mesa region, where it is regarded as the most sensitive area concerning SEB failure in a double-trench MOSFET structure from our previous simulations. 25) It should be noted that, for simplicity, the self-heating effect is not considered. The simulation results, however, could still reveal the radiation characteristics of devices qualitatively, 26,27) especially for comparison here.…”
Section: Radiation Characteristicsmentioning
confidence: 99%
“…In recent years, the radiation damage effects and radiation hardening techniques of SiC VDMOS devices have gradually become a research hotspot due to their sensitivity to radiation-induced damage in the oxide layer. Among them, the function disablement characteristic of SEE radiation damage has received extensive attention both domestically and abroad [13][14][15][16]. Increasing the thickness of the VDMOS oxide layer is a commonly employed measure to strengthen resistance against SEEs.…”
Section: Introductionmentioning
confidence: 99%