The photophysics and morphology of thin films of N,N-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) (1) and the 1,7-diphenyl (2) and 1,7-bis(3,5-di-tert-butylphenyl) (3) derivatives blended with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) were studied for their potential use as photoactive layers in organic photovoltaic (OPV) devices. Increasing the steric bulk of the 1,7-substituents of the perylene-3,4:9,10-bis(dicarboximide) (PDI) impedes aggregation in the solid state. Film characterization data using both atomic force microscopy and X-ray diffraction showed that decreasing the PDI aggregation by increasing the steric bulk in the order 1 < 2 < 3 correlates with a decrease in the density/size of crystalline TIPS-Pn domains. Transient absorption spectroscopy was performed on ~100 nm solution-processed TIPS-Pn:PDI blend films to characterize the charge separation dynamics. These results showed that selective excitation of the TIPS-Pn results in competition between ultrafast singlet fission ((1*)TIPS-Pn + TIPS-Pn → 2 (3*)TIPS-Pn) and charge transfer from (1*)TIPS-Pn to PDIs 1-3. As the blend films become more homogeneous across the series TIPS-Pn:PDI 1 → 2 → 3, charge separation becomes competitive with singlet fission. Ultrafast charge separation forms the geminate radical ion pair state (1)(TIPS-Pn(+•)-PDI(-•)) that undergoes radical pair intersystem crossing to form (3)(TIPS-Pn(+•)-PDI(-•)), which then undergoes charge recombination to yield either (3*)PDI or (3*)TIPS-Pn. Energy transfer from (3*)PDI to TIPS-Pn also yields (3*)TIPS-Pn. These results show that multiple pathways produce the (3*)TIPS-Pn state, so that OPV design strategies based on this system must utilize this triplet state for charge separation.