Dermoscopic images are commonly used in the early diagnosis of skin lesions, and several computational systems have been proposed to analyze them. The segmentation of the lesions is a fundamental step in many of these systems. Therefore, a semi-automatic segmentation method is proposed here, which begins by building the superpixels of the image under analysis based on the zero parameter version of the simple linear iterative clustering (SLIC0) algorithm. Then, each superpixel is represented using a descriptor built by combining the grey-level co-occurrence matrix and Tamura texture features. Afterward, the gain ratios of the features are used to select the input for the semisupervised seeded fuzzy C-means clustering algorithm. Hence, from a few specialistselected superpixels, this clustering algorithm groups the built superpixels into lesion or background regions. Finally, the segmented image undergoes a post-processing step to eliminate sharp edges. The experiments were performed on 1,380 images: 401 images from the PH 2 and DermIS datasets, which were used to establish the parameters of the method, and 3,573 images from the ISIC 2016, ISIC 2017 and ISIC 2018 datasets were used for the analysis of the method's performance. The findings suggest that, by manually identifying just a few of the generated superpixels, the method can achieve an average segmentation accuracy of 96.78%, which confirms its superiority to the ones in the literature.