Abstract:This work illustrated an application of the FOSS code SPHERA v.8.0 (RSE SpA, Milano, Italy) to the simulation of landslide hazard at the slope of a water basin. SPHERA is based on the weakly compressible SPH method (WCSPH) and holds a mixture model, consistent with the packing limit of the Kinetic Theory of Granular Flow (KTGF), which was previously tested for simulating two-phase free-surface rapid flows involving water-sediment interaction. In this study a limiting viscosity parameter was implemented in the previous formulation of the mixture model to limit the growth of the apparent viscosity, thus saving computational time while preserving the solution accuracy. This approach is consistent with the experimental behavior of high polymer solutions for which an almost constant value of viscosity may be approached at very low deformation rates near the transition zone of elastic-plastic regime. In this application, the limiting viscosity was used as a numerical parameter for optimization of the computation. Some preliminary tests were performed by simulating a 2D erosional dam break, proving that a proper selection of the limiting viscosity leads to a considerable drop of the computational time without altering significantly the numerical solution. SPHERA was then validated by simulating a 2D scale experiment reproducing the early phase of the Vajont landslide when a tsunami wave was generated that climbed the opposite mountain side with a maximum run-up of about 270 m. The obtained maximum run-up was very close to the experimental result. Influence of saturation of the landslide material below the still water level was also accounted, showing that the landslide dynamics can be better represented and the wave run-up can be properly estimated.