Abstract:The concepts of "Smart Cities" and "Smart Manufacturing" are different data-driven domains, although both rely on intelligent information technology and data analysis. With the application of linked data and affordance-based approaches, both domains converge, paving the way for new and innovative viewpoints regarding the comparison of urban tasks with indoor manufacturing tasks. The present study builds on the work, who state that cities are scaled versions of each other, by extending this thesis towards indoor manufacturing environments. Based on their structure and complexity, these environments are considered to form ecosystems of their own, comparable to "small cities". This conceptual idea is demonstrated by examining the process of human problem-solving in transportation situations from both perspectives (i.e., city-level and manufacturing-level). In particular, the authors model tasks of human operators that are used to support transportation processes in indoor manufacturing environments based on affordances and spatial-temporal data. This paper introduces the fundamentals of the transformation process of outdoor tasks and process planning activities to indoor environments, particularly to semiconductor manufacturing environments. The idea is to examine the mapping of outdoor tasks and applications to indoor environments, and vice-versa, based on an example focusing on the autonomous transportation of production assets in a manufacturing environment. The approach is based on a spatial graph database, populated with an indoor navigation ontology and instances of indoor and outdoor objects. The results indicate that human problem-solving strategies can be applied to indoor manufacturing environments to support decision-making in autonomous transportation tasks.