Abstract. SET and MYND domain containing 3 (SMYD3) is a histone methyltransferase (HMT) and transcription factor, which serves important roles in carcinogenesis. Numerous downstream target genes of SMYD3 have been identified in previous studies. However, the downstream microRNA (miRNA) s regulated by SMYD3 are yet to be elucidated. In the present study, the results of miRNA microarray demonstrated that 30 miRNA expression profiles were upregulated, whilst 24 miRNAs were downregulated by >2.0-fold in the SMYD3-overexpressed MCF-7 breast cancer cells. The HMT activity was demonstrated to be essential for SMYD3-mediated transactivation of miR-200c-3p and the overexpression of miR-200c-3p inhibited the transactivation effects of SMYD3 on myocardin-related transcription factor-A-dependent migration-associated genes. To our best knowledge, the current study is the first to report on the transcriptional regulation of SMYD3 on miRNAs, and miR-200c may be a downstream negative regulator of the SMYD3-mediated pathway in the migration of breast cancer cells. These results may provide a novel theoretical basis to understand the mechanisms underlying the initiation, progression, diagnosis, prevention and therapy of breast cancer.
IntroductionSET and MYND domain containing 3 (SMYD3) is a novel histone methyltransferase gene identified in hepatoma and colon carcinoma cells by Hamamoto et al (1). SMYD3 is located on human chromosome 1 and encodes two protein isoforms that are composed of 428 and 369 amino acids. Previous studies have demonstrated that SMYD3 is frequently overexpressed in numerous types of cancer cells, including hepatic, colon, gastric and cervical carcinoma, and breast cancer (2-4), whilst the expression levels were lower in the corresponding normal tissue. A number of previous studies have demonstrated that SMYD3 has vital roles in the process of tumor development via its functions as a histone methylation enzyme and a transcription factor (5,6). SMYD3 modifies chromatin structure by catalyzing the methylation of histone H3 at lysine 4 (H3K4), H4K20 and H4K5 (5,6). Also, SMYD3 regulates the transcription of target genes via associating with RNA polymerase II or HELZ RNA helicase and binding at the motif CCCTCC or GGAGGG in the promoter (1).MicroRNAs (miRNAs) are small, non-coding, endogenous RNA molecules of 18-22 nucleotides that were first identified in Caenorhabditis elegans. miRNAs suppress gene expression by binding the targeted mRNA transcripts, which causes translational repression or mRNA degradation. Previous studies demonstrated that miRNAs serve important roles in tumorigenesis through the regulation of genes involved in cancer development and maintenance (7,8).A number of studies have identified that histone methylation and miRNAs are essential in the initiation and progression of cancer (7-9). However, the association between SMYD3 and miRNAs is yet to be elucidated. To investigate this further, the current study analyzed the global regulatory effects of SMYD3 on miRNAs in breast cancer cells usi...