“…In the literature, in studies for assessment and evaluation and student performance evaluation, artificial neural networks, deep learning, random forest, logistic regression, multilayer perceptron, naive bayes, support vector machines, C4.5, decision trees, k-means, JRIP, J48, k-NN, image processing, and fuzzy inference methods were used (Abu Bakar et al, 2020;Abubakar and Ahmad, 2017;Annabestani et al, 2019;Azimjonov et al, 2016;Barlybayev et al, 2016;Cebi and Karal, 2017;Dashko et al, 2020;Echauz and Vachtsevanos, 1995;Ghatasheh, 2015;Gocheva-Ilieva et al, 2021;Hassan et al, 2019;Hussain et al, 2018;Ingoley and Bakal, 2012;Ivanova and Zlatanov, 2019;Jamsandekar and Mudholkar, 2013;Jyothi et al, 2014;Khawar et al, 2020;Kotsiantis et al, 2004;Mahboob et al, 2016;Ndukwe et al, 2019;Ölmez, 2010;Raval and Tailor, 2020;Salmi et al, 2014;Silva et al, 2016;Sisovic et al, 2016;Slater and Baker, 2019;Sokkhey and Okazaki, 2019;Turan et al, 2018;Umer et al, 2017;Ünver, 2020;Waheed et al, 2020;Wardoyo and Yuniarti, 2020;Yildiz et al, 2013;Yıldız, 2014). Since fuzzy logic-based work was done within the scope of the study, the studies carried out with this method are detailed below.…”