IntroductionNew impetus for interdisciplinary research on food, energy, and water systems is emerging, driven by an increasing recognition that focus on gains in one specific area can inadvertently lead to losses in others, as well as by concerns about population growth, climate change, water resources, and deficiencies of the current food and agricultural system. As this research area develops, the scientific community can work to identify the most critical questions, tools, and approaches to cost-effectively uncover sustainable solutions. In this article, we propose that the field of agroecology is poised to effectively address these challenges, but we also highlight several obstacles that may need to be overcome to enable broader application of agroecological solutions.A commonly used definition of agroecology is that it is "the science of applying ecological concepts and principles to the design and management of sustainable food systems" (Gliessman, 2014), and many authors have stressed the importance of defining agroecology more broadly as jointly a science, practice and social movement (Sevilla Guzmán et al. 2013). While definitions of agroecology vary (Montenegro de Wit and Iles 2016), we have interpreted that a core feature is that it entails a systems -based study of the agricultural system -from crop production to product use -and draws on the biophysical and social sciences to develop ecologically, economically, and socially sustainable agricultural practices. It is noteworthy that agroecology is often defined in terms of food systems, but that the field includes tools and perspectives that are highly relevant to agricultural systems more broadly, which are tightly linked to water and energy systems.Agroecology involves a multi-disciplinary, and often a transdisciplinary, approach that can lead to solutions that serve the public good by simultaneously fostering food system productivity and resilience, reducing energy consumption and supporting bioenergy production, as well as conserving water resources (Kremen and Miles, 2012; Ponisio et al., 2015; Gliessman, 2014; Schipanski
COMMENTARYLeveraging agroecology for solutions in food, energy, and water
Marcia DeLonge and Andrea BascheGlobal agriculture is facing growing challenges at the nexus of interconnected food, energy and water systems, including but not limited to persistent food insecurity and diet-related diseases; growing demands for energy and consequences for climate change; and declining water resources, water pollution, floods and droughts. Further, soil degradation and biodiversity loss are both triggers for and consequences of these problems. In this commentary, we argue that expanding agroecological principles, tools, and technologies and enhancing biological diversity can address these challenges and achieve better socioeconomic outcomes. Agroecology is often described as multi-or transdiscplinary, and applies ecological principles to the design and management of agricultural systems through scientific research, practice and collective ...