We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts;(2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end-of-season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50-64%. Model initial conditions and management information accounted for Abbreviations: APSIM, Agricultural Production Systems sIMulator; RRMSE, relative root mean square error.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. one-fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R 2 = 0.88), root depth (R 2 = 0.83), biomass production (R 2 = 0.93), grain yield (R 2 = 0.90), plant N uptake (R 2 = 0.87), soil moisture (R 2 = 0.42), soil temperature (R 2 = 0.93), soil nitrate (R 2 = 0.77), and water table depth (R 2 = 0.41). We concluded that model set-up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment. Neil Huth from CSIRO for their support with the APSIM model, Iowa State University students () for assistance with data collection and managing the field experiments. We also thank the APSIM Initiative for making the software publicly available and for ensuring software quality. ORCIDSotirios V. Archontoulis https://orcid.org/0000-0001-7595-8107 Mark A. Licht https://orcid.org/0000-0001-6640-7856 Kendall R. Lamkey
Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR’s were within the historical N rate error range (40–50 kg N ha-1). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward agronomic, economic, and environmental sustainability.
Quantitative measurements of root traits can improve our understanding of how crops respond to soil and weather conditions, but such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for maize (Zea mays) and soybean (Glycine max) crops across a range of growing conditions in the Midwest USA. Two sets of root measurements were taken every 10-15 days: in the crop row (in-row) and between two crop rows (center-row) across six Iowa sites having different management practices such as planting dates and drainage systems, totaling 20 replicated experimental treatments. Temporal root data were best described by linear segmental functions. Maize RFV was 0.62 ± 0.2 cm d −1 until the 5th leaf stage when it increased to 3.12 ± 0.03 cm d −1 until maximum depth occurred at the 18th leaf stage (860°Cd after planting). Similar to maize, soybean RFV was 1.19 ± 0.4 cm d −1 until the 3rd node when it increased to 3.31 ± 0.5 cm d −1 until maximum root depth occurred at the 13th node (813.6°C d after planting). The maximum root depth was similar between crops (P > 0.05) and ranged from 120 to 157 cm across 18 experimental treatments, and 89-90 cm in two experimental treatments. Root depth did not exceed the average water table (two weeks prior to start grain filling) and there was a significant relationship between maximum root depth and water table depth (R 2 = 0.61; P = 0.001). Current models of root dynamics rely on temperature as the main control on root growth; our results provide strong support for this relationship (R 2 > 0.76; P < 0.001), but suggest that water table depth should also be considered, particularly in conditions such as the Midwest USA where excess water routinely limits crop production. These results can assist crop model calibration and improvements as well as agronomic assessments and plant breeding efforts in this region.
Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.