Thin film ultraviolet detectors based on hydrogenated amorphous silicon alloys are realized with different diode structures (PIN, NIP, PN, and NP). The PIN and NIP detectors exhibit higher sensitivity in the ultraviolet spectrum and a significant lower dark current in comparison to the PN or NP structures. The best detector performance was achieved with a 33 nm thick PIN diode. This detector shows a maximum of quantum efficiency of 36.3% at a wavelength of 310 nm. By varying the thickness of the semi-transparent Ag front contact the selectivity of the detectors with the quantum efficiency peak at 320 nm can be adjusted. Thus, the spectral sensitivity of the detector shifts from a broad UV to a selective UV-B spectrum.