By carrying out structural modifications based on the bicyclic peptide structure of echinomycin, we successfully synthesized various powerful antitumor derivatives. The ring conformation in the obtained compounds was restricted by cross-linking with an unnatural bond. The prepared derivatives were demonstrated to strongly suppress the hypoxia inducible factor (HIF)-1 transcriptional activation and hypoxia induction of HIF-1 protein expression. Particularly, alkenebridged derivative 12 exhibited remarkably potent cytotoxicity (IC 50 = 0.22 nM on the MCF-7 cell line) and HIF-1 inhibition (IC 50 = 0.09 nM), which considerably exceeded those of echinomycin. Conformational analyses and molecular modeling studies revealed that the biological activities were enhanced following restriction of the conformation by cross-linking through a metabolically stable and rigid bridge bond. In addition, we proposed a new globular conformation stabilized by intramolecular π stacking that can contribute to the biological effects of bicyclic depsipeptides. The developments presented in the current study serve as a useful guide to expand the chemical space of peptides in drug discovery.