Ultrafast atomic vibrations mediate heat transport, serve as fingerprints for chemical bonds and drive phase transitions in condensed matter systems. Light pulses shorter than the atomic oscillation period can not only probe, but even stimulate and control collective excitations. In general, such interactions are performed with free-propagating pulses. Here, we demonstrate intra-cavity excitation and time-domain sampling of coherent optical phonons inside an active laser oscillator. Employing real-time spectral interferometry, we reveal that Terahertz beats of Raman-active optical phonons are the origin of soliton bound-states – also termed “Soliton molecules” – and we resolve a coherent coupling mechanism of phonon and intra-cavity soliton motion. Concurring electronic and nuclear refractive nonlinearities generate distinct soliton trajectories and, effectively, enhance the time-domain Raman signal. We utilize the intrinsic soliton motion to automatically perform highspeed Raman spectroscopy of the intra-cavity crystal. Our results pinpoint the impact of Raman-induced soliton interactions in crystalline laser media and microresonators, and offer unique perspectives toward ultrafast nonlinear phononics by exploiting the coupling of atomic motion and solitons inside a cavity.