Predator-prey models are the building blocks of the ecosystems as biomasses are grown out of their resource masses. Different relationships exist between these models as different interacting species compete, metamorphosis occurs and migrate strategically aiming for resources to sustain their struggle to exist. To numerically investigate these assumptions, ordinary differential equations are formulated, and a variety of methods are used to obtain and compare approximate solutions against exact solutions, although most numerical methods often require heavy computations that are time-consuming. In this paper, the traditional differential transform (DTM) method is implemented to obtain a nu-merical approximate solution to prey-predator models. The solution obtained with DTM is convergent locally within a small domain. The multi-step differential transform method (MSDTM) is a technique that improves DTM in the sense that it increases its interval of convergence of the series expansion.One predator-one prey and two-predator-one prey models are considered with a quadratic term which signifies other food sources for its feeding. The result obtained numerically and graphically showspoint DTM diverges. The advantage of the new algorithm is that the obtained series solution converges for wide time regions and the solutions obtained from DTM and MSDTM are compared with so-lutions obtained using the classical Runge-Kutta method of order four. The results demonstrated is that MSDTM computes fast, is reliable and gives good results compared to the solutions obtained using the classical Runge-Kutta method.