2015
DOI: 10.4236/ojop.2015.43009
|View full text |Cite
|
Sign up to set email alerts
|

Solving Ordinary Differential Equations with Evolutionary Algorithms

Abstract: In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
1
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 2 publications
0
1
0
4
Order By: Relevance
“…ному алгоритму коэффициенты каждого такого полинома, затем во всех n слагаемых (12) сложить числовые значения при равных степенях. В результате полином (12) примет вид…”
Section: P X F X T R J R T X X H X a X B H B A N X X H Junclassified
See 3 more Smart Citations
“…ному алгоритму коэффициенты каждого такого полинома, затем во всех n слагаемых (12) сложить числовые значения при равных степенях. В результате полином (12) примет вид…”
Section: P X F X T R J R T X X H X a X B H B A N X X H Junclassified
“…Если такое преобразование выполнить на каждом подынтервале из (6), то в индекс коэффициентов (13) включается номер подынтервала. Для полинома (12) 14) и для полинома (13) соответственно…”
Section: P X F X T R J R T X X H X a X B H B A N X X H Junclassified
See 2 more Smart Citations
“…Nowadays, mathematical models of real applications are represented as ODEs and different metaheuristics are been designed to solve these problems. Numerical optimization techniques like genetic algorithm [38], [39], different variants of particle swarm optimization (PSO) [40]- [42], interior point algorithm [43], evolutionary programming [44] and others [45], [46] are used to solve mathematical models involving ODEs and PDEs. In [41], a variant of PSO is designed and applied to solve nonlinear ODEs.…”
Section: Introductionmentioning
confidence: 99%