The present review focusses on how tactile somatosensory afference is encoded and processed, and how this information is interpreted and acted upon in terms of motor control. We relate the fundamental workings of the sensorimotor system to the rehabilitation of amputees using modern prosthetic interventions. Our sense of touch is central to our everyday lives, from allowing us to manipulate objects accurately to giving us a sense of self-embodiment. There are a variety of specialised cutaneous mechanoreceptive afferents, which differ in terms of type and density according to the skin site. In humans, there is a dense innervation of our hands, which is reflected in their vast over-representation in somatosensory and motor cortical areas. We review the accumulated evidence from animal and human studies about the precise interplay between the somatosensory and motor systems, which is highly integrated in many brain areas and often not separable. The glabrous hand skin provides exquisite, discriminative detail about touch, which is useful for refining movements. When these signals are disrupted, such as through injury or amputation, the consequences are considerable. The development of sensory feedback in prosthetics offers a promising avenue for the full integration of a missing body part. Real-time touch feedback from motor intentions aids in grip control and the ability to distinguish different surfaces, even introducing the possibility of pleasure in artificial touch. Thus, our knowledge from fundamental research into sensorimotor interactions should be used to develop more realistic and integrative prostheses.