Highlights d Hypoxia triggers an increase in AQP4-mediated flux of water into astrocytes d Translocation of AQP4 to the astrocyte cell surface drives increased water flux d AQP4 cell-surface localization is mediated by a CaM-and PKA-dependent mechanism d Inhibition of AQP4 localization with the licensed drug TFP halts CNS edema in rats
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in articular cartilage and line the synovial joint. Lubricin may play a role in modulating inflammatory responses through interaction with CD44. This led us to examine if lubricin could be playing a larger role in the modulation of inflammation/immunity through interaction with Toll-like receptors (TLRs). Human Embryonic Kidney (HEK) cells overexpressing TLRs 2, 4 or 5 and surface plasmon resonance were employed to determine if full length recombinant human lubricin was able to bind to and activate TLRs. Primary human synovial fibroblasts were also examined using flow cytometry and Luminex multiplex ELISA. A rat destabilization model of osteoarthritis (OA) was used to determine if lubricin injections were able to regulate pain and/or inflammation in vivo. Lubricin can bind to and regulate the activity of TLRs, leading to downstream changes in inflammatory signalling independent of HA. We confirmed these findings in vivo through intra-articular injections of lubricin in a rat OA model where the inhibition of systemic inflammatory signaling and reduction in pain were observed. Lubricin plays an important role in regulating the inflammatory environment under both homeostatic and tissue injury states.
Parietal cortex contributes to body representations by integrating visual and somatosensory inputs. Because mirror neurons in ventral premotor and parietal cortices represent visual images of others' actions on the intrinsic motor representation of the self, this matching system may play important roles in recognizing actions performed by others. However, where and how the brain represents others' bodies and correlates self and other body representations remain unclear. We expected that a population of visuotactile neurons in simian parietal cortex would represent not only own but others' body parts. We first searched for parietal visuotactile bimodal neurons in the ventral intraparietal area and area 7b of monkeys, and then examined the activity of these neurons while monkeys were observing visual or tactile stimuli placed on the experimenter's body parts. Some bimodal neurons with receptive fields (RFs) anchored on the monkey's body exhibited visual responses matched to corresponding body parts of the experimenter, and visual RFs near that body part existed in the peripersonal space within approximately 30 cm from the body surface. These findings suggest that the brain could use self representation as a reference for perception of others' body parts in parietal cortex. These neurons may contribute to spatial matching between the bodies of the self and others in both action recognition and imitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.