In this paper, we present simulation results obtained using SILVACO TCAD tools for a 3-D silicon on insulator (SOI) n-FinFET structure with a gate length of 8 nm at 300K. The effects of variations of the device's key electrical parameters, such as threshold voltage, subthreshold slope, transconductance, drain induced barrier lowering, oncurrent, leakage current and on/off current ratio are presented and analyzed. We will also describe some simulation results related to the influence of the gate work function variations on the considered structure. These variations have a direct impact on the electrical device characteristics. The results show that the threshold voltage decreases when we reduce the gate metal work function Φ m . As a consequence, the behavior of the leakage current improves with increased Φ m . Therefore, the short channel effects in real 3-D FinFET structures can reasonably be controlled and improved by proper adjustment of the gate metal work function.