“…+ D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ I α µ + S * D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − S * D(µ) * 2µ+ϕ(ω,µ) 2 I α µ + D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ I α µ + S * D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − S * D(µ) ,from which, we have:+ D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ p I α µ + S * D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − S * D(µ), I α µ + S * D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − S * D(µ) + D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ p I α µ + SD(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − SD(µ)This completes the proof. If D(z) = 1, then from (26) and (31), we get Theorem 3.If χ(ς) = ς, then from (26) and (31), we achieve the following coming inequality, see[42]:S 2µ+ϕ(ω,µ) 2 I α µ + D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ p I α µ + SD(µ + {ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − SD(µ) ≤ p S(µ)+S(µ+ϕ(ω,µ)) 2 I α µ + D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ) ≤ p S(µ)+S(ω) 2 I α µ + D(µ + ϕ(ω, µ)) + I α µ+ϕ(ω,µ) − D(µ)…”