An acoustic reverberator consisting of a network of delay lines connected via
scattering junctions is proposed. All parameters of the reverberator are
derived from physical properties of the enclosure it simulates. It allows for
simulation of unequal and frequency-dependent wall absorption, as well as
directional sources and microphones. The reverberator renders the first-order
reflections exactly, while making progressively coarser approximations of
higher-order reflections. The rate of energy decay is close to that obtained
with the image method (IM) and consistent with the predictions of Sabine and
Eyring equations. The time evolution of the normalized echo density, which was
previously shown to be correlated with the perceived texture of reverberation,
is also close to that of IM. However, its computational complexity is one to
two orders of magnitude lower, comparable to the computational complexity of a
feedback delay network (FDN), and its memory requirements are negligible