“…(Kavzoglu et al, 2019). Approaches to LSM modeling vary widely, and some of the most common approaches are highlighted in this study: AHP (Kayastha et al, 2013;Roccati et al, 2021;Grozavu and Patriche, 2021), ANFIS (Paryani et al, 2020;Chen et al, 2021), ANN (Chen et al, 2017), PSO-ANN (Moayedi et al, 2019), Weighting Factor (Yalcin, 2008;Hussain et al, 2021), Bayesian (Sun et al, 2021;Lee et al, 2020), Deep Learning (Dao et al, 2020;Ngo et al, 2021), Frequency Ratio (Senanayake et al, 2020;Berhane et al, 2020), Fuzzy Logic (Tsangaratos et al, 2018Razifard et al, 2019), Logistic Regression (Schlögel et al, 2018;Chen et al, 2019), Machine Learning (Ghorbanzadeh et al, 2019, Kavzoglu et al, 2019, Mohammady et al, 2021, M-AHP (Nefeslioglu et al, 2012;Bugday and Akay, 2019), Multilayer Perceptron Neural Network (Li et al, 2019;Hong et al, 2020), SWARA (Dehnavi et al, 2015;Pourghasemi et al, 2019).…”