The task of designing large real-time reactive systems, which interact continuously with their environment and exhibit concurrency properties, is a challenging one. In this paper, we explore the utility of a combination of behavior and function specification languages in specifying such systems and verifying their properties. An existing specification language, statecharts, is used to specify the behavior of real-time reactive systems, while a new logic-based language called FNLOG (based on first-order predicate calculus and temporal logic, is designed to express the system functions over real time. Two types of system properties, intrinsic and structural, are proposed. It is shown that both types of system properties are expressible in FNLOG and may be verified by logical deduction, and also hold for the corresponding behavior specification.