Many spider orb-webs are exposed to sunlight and the potentially damaging effects of ultraviolet B (UVB) radiation. We examined the effect of UVB on the viscoelastic glycoprotein core of glue droplets deposited on the prey capture threads of these webs, hypothesizing that webs built by species that occupy sunny habitats are less susceptible to UVB damage than are webs built by species that prefer shaded forest habitats or by nocturnal species. Threads were tested shortly after being collected in the early morning and after being exposed to UVB energy equivalent to a day of summer sun and three times this amount. Droplets kept in a dark chamber allowed us to evaluate post-production changes. Droplet volume was unaffected by treatments, indicating that UVB did not damage the hygroscopic compounds in the aqueous layer that covers droplets. UVB exposure did not affect energies of droplet extension for species from exposed and partially to mostly shaded habitats (Argiope aurantia, Leucauge venusta and Verrucosa arenata). However, UVB exposure reduced the energy of droplet extension in Micrathena gracilis from shaded forests and Neoscona crucifera, which forages at night. Only in L. venusta did the energy of droplet extension increase after the dark treatment, suggesting endogenous molecular alignment. This study adds UVB irradiation to the list of factors (humidity, temperature and strain rate) known to affect the performance of spider glycoprotein glue, factors that must be more fully understood if adhesives that mimic spider glycoprotein glue are to be produced.