We investigate theoretically transport characteristics in a graphene-based pseudospinmagnet/superconductor junction, including the s-wave and the d-wave pairing symmetry potential in the superconducting region. It is found that the pseudospin polarization, in sharp contrast to spin polarization in the graphene-based ferromagnet/superconductor junction, holds no influence on the specular Andreev reflection for a negligible Fermi energy. Furthermore, the Fano factor is crucially affected by the zero bias state. Therefore, we suggest here that the findings could shed light on the realization of graphene-based pseudospintronics devices and provide a new way to detect the specular Andreev reflection and the zero bias state in the actual experiments.