Manipulating Ag nanowire (AgNW) assembly to tailor the opto-electrical properties and surface morphology could improve the performance of next-generation transparent conductive electrodes. In this paper, we demonstrated a water-bath assisted convective assembly process at the temporary water/alcohol interface for fabricating hierarchical aligned AgNW electrodes. The convection flow plays an important role during the assembly process. The assembled AgNW film fabricated via three times orthogonal dip-coating at a water-bath temperature of 80 °C has a sheet resistance of 11.4 Ω sq(-1) with 89.9% transmittance at 550 nm. Moreover, the root mean square (RMS) of this assembled AgNW film was only 15.6 nm which is much lower than the spin-coated random AgNW film (37.6 nm) with a similar sheet resistance. This facile assembly route provides a new way for manufacturing and tailoring ordered nanowire-based devices.