aThis study investigated ink penetration through imaging technology, first by gray and contour mapping and then calculating the ink penetration depth by programing. Next, a series of further analyses were carried out, including average ink permeability, ink distributions, and printability of different uncoated inkjet paper with different parameters. The impact on ink penetration of the microstructure and hydrophilicity of the uncoated paper was also studied. The experimental results indicated that paper specimens with sizing agent were resistant to the ink, resulting in a slow and shallow ink penetration. Paper containing filler had a more hydrophilic surface and porous structure, leading to a faster and deeper ink penetration. However, the calendering operation could make the paper structure more compact and reduce the porosity and penetration depth. When an appropriate combination of sizing agent, filler content, and the calendering process was utilized, a more stable hue could be produced with improvements in optical density, saturation, and color.