A composite material is generally a combination of materials differing in composition or form on a macro scale for the purposes of attaining specific characteristics and properties. The developments in the field of composite materials have granted significant weight reduction in structural design. When compared to metallic materials, composites offer many advantages, especially high strength, stiffness to weight ratio, excellent fatigue properties, and corrosion resistance. Plates, curved panels, the cylindrical shell-shaped forms of models are being broadly used in many structural packages of engineering structure. For design the structure, it is important to know the behaviour of these under static, free vibration, buckling condition. The present paper aims to review the literature on static, free vibration, and buckling analysis of composite flat panel, curved panel, and cylindrical shell. Further, the testing procedure of laminate, design guidelines of laminates and cost estimations with mechanical properties comparison of laminate with metal, CLT (classical lamination theory) basis including thermal and moisture expansion for stiffness evaluation are also summarised in this paper.