One of the main objective of data fusion is the integration of several acquisition of the same physical object, in order to build a new consistent representation that embeds all the information from the different modalities. In this paper, we propose the use of optimal transport theory as a powerful mean of establishing correspondences between the modalities. After reviewing important properties and computational aspects, we showcase its application to three remote sensing fusion problems: domain adaptation, time series averaging and change detection in LIDAR data. ABSTRACT One of the main objective of data fusion is the integration of several acquisition of the same physical object, in order to build a new consistent representation that embeds all the information from the different modalities. In this paper, we propose the use of optimal transport theory as a powerful mean of establishing correspondences between the modalities. After reviewing important properties and computational aspects, we showcase its application to three remote sensing fusion problems: domain adaptation, time series averaging and change detection in LIDAR data.